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ABSTRACT

A rigorous procedure is developed to determine the prop-
agation constant for an inhomogeneous stripline, which con-
sists of a perfectly conducting strip of infinitesimal thick-
ness and finite width embedded in multiple dielectric lay-
ers between two perfectly conducting ground planes, An
integral equation, formulated in terms of an electric field
Green’s function, is obtained by enforcing the boundary
conditions on the strip. The current distribution and prop-
agation constant are determined by solving the integral
equation using a method of moments procedure, For sev-
eral inhomogeneous stripline structures, both proper and
improper dominant modal solutions are obtained, One of
the most important practical cases, studied in detail, is that
of the conventional stripline with an air-gap above the strip.
This work represents the first reporting of improper modal
solutions for such a stripline.

L. INTRODUCTION

Planar stripline transmission lines have been widely ap-
plied in microwave and millimeter-wave systems. The in-
homogeneous stripline consists of multiple dielectric lay-
ers in which a thin perfectly conducting strip is embed-
ded, bounded by conducting ground planes. Figure 1 il-
lustrates the special case of a stripline with an air gap.
The electrical properties of each layer are characterized
by a complex permittivity and complex permeability. In
design work, the transmission line parameters, propaga-
tion constant (kg = B — ja) and characteristic impedance
(Z,), of the stripline are required. Previous investigators
have characterized the dominant mode of many inhomoge-
neous striplines [1]. In these investigations, the propaga-
tion constant, for lossless structures, was always real and
greater than the guided-mode wavenumbers of the back-
ground structure (i.e, the parallel-plate waveguide). These
real ko wavenumbers correspond to proper modal solutions
because the associated fields satisfy the radiation condition
in the direction transverse to the strip. However, there
may exist solutions for which the propagation constant is
less than the guided-mode wavenumber of the dominant
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parallel-plate mode. Such a solution would correspond to
a stripline mode which leaks into the parallel-plate waveg-
uide mode. For these solutions, the propagation constant
would be, in general, complex, corresponding to smproper
modal solutions. The fields associated with these improper
solutions do not satisfy the radiation condition in the di-
rection transverse to the strip. However, these improper
solutions can be physically significant, for finite source dis-
tributions, in a restricted region about the strip. We have
found both proper and improper modal solutions for the
dominant modes of several inhomogeneous stripline con-
figurations. We will present the results for the important
problem of a stripline with a small air gap.

II. FORMULATION

Our analysis of the inhomogeneous stripline is based on
standard spectral domain techniques. The strip is assumed
to be infinitesimally thin, located within the m’th layer,
and oriented along the z direction. In order to simplify the
analysis, we assume that the layered structure is infinite
along the = and y coordinates so that the original three-
dimensional analysis is reduced to a one-dimensional prob-
lem in the spectral domain by utilizing a two-dimensional
Fourier transform in = and y. The width of the strip is
assumed to be a small fraction of a wavelength; therefore,
only longitudinal (z directed) currents are assumed, so that

Js = Jo(y)e FReotx (1)

where J;(y) is the transverse variation of current and k.,
is the complex modal propagation constant. An integral
equation in terms of the Fourier transform of J;(y) is de-
rived by enforcing the PEC boundary conditions on the
strip,

o0
/ Gra(Fao, ky, 20)F2(ky) dy =0, @)
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where C:’N is the spectral domain representation of the X%
component of the electric field dyadic Green’s function.
To formulate the electric field Green’s function, Maxwell’s
equations are transformed, via a pair of Fourier transfor-
mations, into a pair of scalar transmission line equations.
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These transmission line expressions are solved by enforcing
the boundary conditions at each interface separating the
layers. This approach, often referred to as the speciral do-
main immittance method, is presented in detail in [2]. The
integral equation (2) is solved using the method of mo-
ments. In this procedure the transverse current variation
Ju(y) is expanded in a series of basis functions; Maxwell-
cosine and pulse functions are used in this investigation.
The resulting homogeneous matrix equation is solved to
obtain the complex modal propagation constant kg, and
the normalized current distribution. For a lossless struc-
ture k%, also represents a valid solution to (2); however,
for complex kz, this corresponds to a nonphysical solution
which increases exponentially in the direction of propaga-
tion.

III. CHOICE OF INTEGRATION PATH

In the proceeding analysis, the integration path in (2) has
been left unspecified. The conventional choice is the real
axis in the ky-plane, extending from —oo to co. This path
(or any path directly equivalent to it by Cauchy’s theorem)
is the correct one for obtaining solutions kg, which corre-
spond to proper modal solutions, in which the energy of
the mode is confined in a region near the strip, and decays
away from the strip in the y direction. This follows from
the fact that proper modes are Fourier transformable func-
tions, in the usual sense. Proper modal solutions are also,
by necessity, real solutions, meaning that k;, is real, for a
lossless structure. A complex k;, for these proper modes
would correspond to attenuation as the wave propagates
along the strip, which would violate the conservation of en-
ergy. Another property common to the proper solutions is
that kgo > krar,. If kg, were less than kryy,, corresponding
poles in the k,-plane would be located on the real axis. Such
pole singularities would correspond to a nontransformable
(and therefore unbounded) modal solution.

In addition to proper modal solutions, it is also interest-
ing to explore the possibility of improper modal solutions
(leaky-waves), in which case kg, may be complex. It is well-
known that complex leaky-wave solutions exist on a variety
of guiding structures [3]. The complex nature of the wave
solution generally corresponds to radiation into the medium
surrounding the guiding structure. Although complex so-
lutions must be improper, and thus violate the radiation
condition at infinity, they may nevertheless be very impor-
tant in explaining the field behavior in restrictive regions
near the guiding structure, as discussed in [3].

For the case of an inhomogeneous stripline, such leakage,
if it exists, must correspond to a launching of the dominant
T M, parallel-plate mode, since this is the only mechanism
by which power can be propagated away from the strip
(assuming all higher modes are below cutoff). The integral
equation (2) may still be used to obtain the solution kg,
for the improper modes, provided the integration path is
suitably chosen. For the stripline shown in Figure 1, the
only propagating parallel-plate mode is assumed to be the
TMp mode; therefore, the integration path is that shown
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in Figure 2 [4]. The deformed path is equivalent to the
conventional real axis path, plus an additional part which
encircles the k7, poles resulting in a residue contribution.
This residue contribution corresponds to the launching of
the TM, mode away from the strip.

IV. NUMERICAL RESULTS

In the practical realization of many striplines, it is very
difficult to eliminate small air gaps in the structure. This
often results in unexpected and frustrated transmission-line
performance. The structure shown in Figure 1 is used to
study the air-gap problem. As mentioned above, the width
of the strip is assumed to be small compared to a wave-
length. In addition, the dimensions of the stripline are such
that only the TMj parallel-plate waveguide mode propa-
gates. Thus, the transverse wavenumber for the TMg mode,
kTu,, is purely real (assuming lossless materials), and the
transverse wavenumbers for the other parallel-plate modes
are purely imaginary, corresponding to modes below cutoff.
These transverse wavenumbers (k) are actually the poles
of the Green’s function Ggz. These poles are located at
kyp = [k2, — k2,]1/? in the complex ky-plane.

As an example, for the stripline shown in figure 1, the
strip width w and the substrate thickness h are both taken
as 0.1 cm, the substrate dielectric constant ¢, = 2.2, and
the operating frequency is 3 GHz. The resulting dominant
mode propagation constants are shown in Figures 3 and 4,
where Figure 3 is the plot of the real part of k,, normalized
with respect to ko (8/k¢) and Figure 4 is the plot of the
normalized imaginary part of kg0 (a/ko), versus the air gap
thickness 6. In Figure 3, the values of 8 for both the proper
and improper modal solutions are shown, along with a plot
of krar,. As seen in this figure, both 8 and krp, decrease

substantially with increasing §. For a zero-thickness air gap
(6 = 0), the values of 3 for both the proper and improper
solutions are equal to krpg,, which is the well-known solu-
tion for the homogeneous stripline. In this case, the poles
corresponding to krpy are removable singularities at the
origin in the ky-plane. Also apparent from Figure 3 is that
B for the proper solution is always greater than or equal
to krag,; however, B for the improper solution is less than
kT, for small 8. For small values of §, as shown in Figure
4, the attenuation constant a increases with air gap thick-
ness. The attenuation constant reaches a maximum just
before B crosses kT, and then decreases rapidly to zero.
When a reaches zero the k;, solution merges with the k¥,
solution. At this point kz, = kJ,, thus the solution must
be real. Although real, this solution is still improper. For
larger values of § the improper solution splits into two real
improper solutions.

To help distinguish between the proper and improper so-
lutions it is desirable to examine the corresponding modal
fields. For § = 0.01 cm, Figure 5 shows a plot of the electric
field corresponding to the proper solution for the geometry
of Figure 4. Figure 6 is a plot of the real part of the elec-
tric field for the improper solution, and Figure 7 is a plot
of the imaginary part of the electric field for the improper



solution. As seen from these figures, the field configura-
tions are quite different. In fact, the field configuration for
the improper solution corresponds to that associated with
the homogeneous stripline, whereas that of the proper solu-
tion is quite different. This leads to the conclusion that, for
striplines with small air gaps, it is the improper modal solu-
tion which corresponds to the conventional stripline mode.

V. CONCLUSIONS

A general and rigorous spectral domain formulation for
the analysis of an arbitrary multiple-layer stripline has been
developed. This formulation is used to determine the prop-
agation constant, normalized surface current distribution,
and corresponding fields for the dominant mode in the strip-
line structure. For multiple-layer striplines, both a proper
and an improper dominant mode solution exist, in general.
For the proper solution, the fields are confined to a re-
gion near the strip, and the propagation constant k.., for
a lossless structure, is purely real and always greater than
kT, the propagation constant of the lowest parallel-plate
mode of the structure. The improper solution is generally
a complex mode with k;, = B — ja, where § and a are
greater than zero. This mode increases with distance from
the strip, and represents a stripline mode which leaks into
the dominant parallel-plate mode of the structure.

One specific structure which was examined in detail is
that of a conventional homogeneous stripline in which a
small air-gap is introduced above the strip. The inhomo-
geneity introduced by the air-gap results in the existence of
both proper and improper dominant mode solutions, which
have different propagation constants and field configura-
tions. One of the most interesting aspects of the air-gap
problem is the fact that the improper complex leaky-wave
solution is the one which has fields that corresponds to
those of a conventional homogeneous stripline. The newly
identified improper modal solution may thus be significant
in explaining abnormally high losses and unpredictable per-
formance which are features of many practical striplines.
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Figure 1: Stripline with an air-gap of thickness é.
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Figure 2: Integration path to obtain kg, for the improper
modal solution.
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Figure 3: Normalized phase constant for proper and im-
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proper modal solutions, and krpr,/ko versus air-
gap thickness, at 3 GHz (A = w = 0.1 cm), for
the stripline of Fig. 1,
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Figure 4: Normalized attenuation constant for the improper

modal solution versus air-gap thickness, at 3 GHz
{(h = w = 0.1 cm), for the stripline of Fig. 1.
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Figure 5:

The real part of the electric field distribution for
the proper solution (6 = 0.01 cm), in a rectangu-
lar window of 0.2 cm X 0.3 cm around the center
strip (w = 0.1 cm), for the geometry of Fig. 4.
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Figure 6:

The real part of the electric field distribution
for the improper solution (§ = 0.01 cm), in a
rectangular window of 0.2 em X 0.3 em around
the center strip (w = 0.1 cm), for the geometry
of Fig. 4.
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Figure 7:
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The imaginary part of the electric field distribu-
tion for the improper solution (6 = 0.01 cm), in
a rectangular window of 0.2 cm x 0.8 cm around
the center strip (w = 0.1 c¢m), for the geometry
of Fig. 4.



