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ABSTRACT

A rigorous procedure is developed to determine the prop-
agation constant for an inhornogeneous stripline, which con-

sists Qf a perfectly conducting strip of infinitesimal thick-

ness and finite width embedded in multiple d~elect ric lay-

ers between two perfectly conduct ing ground planes, An

integral equation, formulated in barns of an electric field

Green’s function, is obtained by enforcing the boundary
conditions on the strip. The current dktributicm and prop-
agation constant are determined by solving the integral
equation using a method Qf moments procedure. For sev-
eral inhomogeneous stripline structures, both pTope?’ and
improper dominant modal solutions are obtained, One of
the most important practical cases, studied in detail, is that
of the conventicsnrd stripline with an air-gap above the strip.
Thk work represents the first reporiing ~f improper modal
solutions for such a stripline.

I. IN’TRODUC’I’ION

Planar ritripline transmiseio~ lines have been widely ap-
plied in microwave and millimeter-wave ~ystem~. The in-
homogeneous stripli~e consists of multiple dielectric lay-

ers in which a thin perfectly conducting strip is embed-

ded, bounded by c~nducting grouud planes. Figure 1 il-

lustrates the special cam of a stripline with an air gap.

The electrical properties ~f each layer are characterized

by a complex permittivity and complex permeability. In

design work, the tramwnission line parameters, propaga-

tion constant (k,. = @- ja) and characteristic impedance

(20), of the stripline are required. Previous investigators

have characterized the dominant mode of many inhomoge-

neous striplines [I]. h these investigations, the propaga-
tion constant, for kwsless structures, was always real and

greater than the guided-mode wavenumbers of the back-

ground structure (i.e. the parallel-piate waveguide). These

real kZQ wavenumbers correspond to pTOpCT modal solutions

because the associated fields satisfy the radiation condition

in the dkection transverse to the strip. However, there

may exist solutions for which the propagation constant is

less than the guided-mode wavenumber of the dominant

parallel-plate mode. Such a solution would correspond to
a stripline mode which leaks into the parallel-plate waveg-
uide mode. For these solutions, the propagation constant
would be, in general, complex, corresponding to improper

modal solutions. The fields associated with these improper

solutions do not satisfy the radiation condition in the di-

rection transverse to the strip. However, these improper

solutions can be physically significant, for finite source dis-

tributions, in a restricted region about the strip. We have

found both proper and improper modal solutions for the

dominant modes of several inhomogeneous stripline con-

figurations. We will present the results for the important
problem of a stripline with a small air gap.

11. FORMULATION

Our analysis of the inhQmogeneous stripline is based on

standard spectral domain techniques. The strip is assumed

to be infinitesimally thin, located within the rrs’th layer,

and oriented along the x direction. In order to simplify the

analysis, we assume that the layered structure is infinite

along the z and y coordinates so that the original three-

dimensional analysis is reduced to a one-dimensional prob-

lem in the spectral domain by utilizing a two-dimensional

Fourier transform in z and g. The width of the strip is

assumed to be a small fraction of a wavelength; therefore,

only longitudinal (x directed) currents are assumed, so that

(1)

where J@(y) is the transverse variation of current and kZO

is the complex modal propagation constant. An integral

equation in terms of the Rmrier transform of Jz(y) is de-

rived by enforcing the PEG boundary conditions on the

strip,

/
m Gz.(kmo, kv, zo)~;(kg) dky = 0, (2)

—co

where ~Zz is the spectral domain representation of the Si

component of the electric field dyadic Green’s function.

To formulate the electric field Green’s function, Maxwell’s

equations are transformed, via a pair of Fourier transfor-

mations, into a pair of scalar transmission line equations.
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These transmission line expressions are solved by enforcing

the boundary conditions at each interface separating the

layers. This approach, often referred to as the spectral do-

main imrnittance method, is presented in detail in [2]. The

integral equation (2) is solved using the method of mo-

ments. In this procedure the transverse current variation

Jz(y) is expanded in a series of basis functions; Maxwell-

cosine and pulse functions are used in thk investigation.

The resulting homogeneous matrix equation is solved to

obtain the complex modal propagation constant kzo and

the normalized current distribution. For a lossless struc-

ture k~o also represents a valid solution to (2); however,

for complex kZO thk corresponds to a nonphysical solution

which increases exponentially in the direction of propaga-

tion.

111. CHOICE OF INTEGRATION PATH

In the proceeding analysis, the integration path in (2) has

been left unspecified. The conventional choice is the real

axis in the kY-plane, extending from –co to m. This path

(or any path directly equivalent to it by Cauchy’s theorem)

is the correct one for obtaining solutions kx~ which corre-

spond to proper modal solutions, in which the energy of

the mode is confined in a region near the strip, and decays

away from the strip in the y direction. This follows from

the fact that proper modes are Fourier transformable func-

tions, in the usual sense. Proper modal solutions are also,

by necessity, real solutions, meaning that kxo is real, for a

lossless structure. A complex k,. for these proper modes

would correspond to attenuation as the wave propagates

along the strip, which would violate the conservation of en-

ergy. Another property common to the proper solutions is

that km. > kTMO. If kz. were less than kTMO, corresponding

poles in the kv-plane would be located on the real axis. Such

pole singularities would correspond to a nontransformable

(and therefore unbounded) modal solution.

In addition to proper modal solutions, it is also interest-

ing to explore the possibility of impropeT modal solutions

(leaky-waves), in which case kzo may be complex. It is well-

known that complex leaky-wave solutions exist on a variety

of guiding structures [3]. The complex nature of the wave

solution generally corresponds to radiation into the medium

surrounding the guiding structure. Although complex so-

lutions must be improper, and thus violate the radiation

condition at infinity, they may nevertheless be very impor-
tant in explaining the field behavior in restrictive regions

near the guiding structure, as discussed in [3].

For the case of an inhomogeneous stripline, such leakage,

if it exists, must correspond to a launching of the dominant

T&fO parallel-plate mode, since this is the only mechanism

by which power can be propagated away from the strip

(assuming all higher modes are below cutoff). The integral

equation (2) may still be used to obtain the solution kzo

for the improper modes, provided the integration path is

suitably chosen. For the stripline shown in Figure 1, the

only propagating parallel-plate mode is assumed to be the

TMO mode; therefore, the integration path is that shown

in Figure 2 [4]. The deformed path is equivalent to the

conventional real axis path, plus an additional part which

encircles the kTMO poles resulting in a residue contribution.

This residue contribution corresponds to the launchlng of

the TMO mode away from the strip.

IV. NUMERICAL RESULTS

In the practical realization of many striplines, it is very

difficult to eliminate small air gaps in the structure. This

often results in unexpected and frustrated transmission-line

performance. The structure shown in Figure 1 is used to

study the air-gap problem. As mentioned above, the width

of the strip is assumed to be small compared to a wave-

length. In addition, the dimensions of the stripline are such

that only the TMO parallel-plate waveguide mode propa-

gates. Thus, the transverse wavenumber for the TMO mode,

k~~o, is purely real (assuming lossless materials), and the

transverse wavenumbers for the other parallel-plate modes

are purely imaginary, corresponding to modes below cutoff.

These transverse wavenumbers (ktw) are actually the poles

of the Green’s function Gcz. These poles are located at

kVP = [k~W – k~O]l/2 in the complex ky-plane.

As an example, for the stripline shown in figure 1, the

strip width w and the substrate thickness h are both taken

as 0.1 cm, the substrate dielectric constant Cr = 2.2, and

the operating frequency is 3 GHz. The resulting dominant

mode propagation constants are shown in Figures 3 and 4,

where Figure 3 is the plot of the real part of kzo normalized

with respect to k. (~/k. ) and Figure 4 is the plot of the

normalized imaginary part of kzO (a/k.), versus the air gap

thickness 6. In Figure 3, the values of/3 for both the proper

and improper modal solutions are shown, along with a plot

of kT~O. AS seen in this figure, both ~ and kTMO decrease

substantially with increasing 8. For a zero-thickness air gap
(6 = O), the values of/? for both the proper and improper
solutions are equal to kTMO, which is the well-known solu-
tion for the homogeneous stripline. In this case, the poles
corresponding to kT~O are removable singularities at the
origin in the ku-plane. Also apparent from Figure 3 is that
@ for the proper solution is always greater than or equal

to kTMo; however, ~ for the improper solution is less than
kTMO for small 6. For small values of 8, as shown in Figure
4, the attenuation constant a increases with air gap thick-
ness. The attenuation constant reaches a maximum just

before ,6 crosses kTMO, and then decreases rapidly to zero.

When a reaches zero the kJO solution merges with the kjo

solution. At this point kzO = k&,, thus the solution must

be real. Although real, this solution is still improper. For

larger values of 8 the improper solution splits into two real

improper solutions.

To help distinguish between the proper and improper so-

lutions it is desirable to examine the corresponding modal

fields. For 6 = 0.01 cm, Figure 5 shows a plot of the electric

field corresponding to the proper solution for the geometry

of Figure 4. Figure 6 is a plot of the real part of the elec-

tric field for the improper solution, and Figure 7 is a plot

of the imaginary part of the electric field for the improper
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solution. As seen from these figures, the field configura-

tions are quite different. In fact, the field configuration for

the impToper solution corresponds to that associated with

the homogeneous stripline, whereas that of the proper SOIU-

tion is quite different. This leads to the conclusion that, for

striplines with small air gaps, it is the improper modal solu-

tion which corresponds to the conventional stripline mode.

V. CONCLUSIONS

A general and rigorous spectral domain formulation for

the analysis of an arbitrary multiple-layer stripline has been

developed. This formulation is used to determine the prop-

agation constant, normalized surface current distribution,

and corresponding fields for the dominant mode in the strip-

line structure. For multiple-layer striplines, both a proper

and an improper dominant mode solution exist, in general.

For the proper solution, the fields are confined to a re-

gion near the strip, and the propagation constant k.., for

a lossless structure, is purely real and always greater than

kT~O, the propagation constant of the lowest parallel-plate

mode of the structure. The improper solution is generally
a complex mode with kZO = /3 – jci, where ,B and a are

greater than zero. This mode increases with distance from

the strip, and represents a stripline mode which leaks into

the dominant parallel-plate mode of the structure.

One specific structure which was examined in detail is

that of a conventional homogeneous stripline in which a

small air-gap is introduced above the strip. The inhomo-

geneity introduced by the air-gap results in the existence of

both proper and improper dominant mode solutions, which

have different propagation constants and field configura-

tions. One of the most interesting aspects of the air-gap

problem is the fact that the improper complex leaky-wave

solution is the one which has fields that corresponds to

those of a conventional homogeneous stripline. The newly

identified improper modal solution may thus be significant

in explaining abnormally high losses and unpredictable per-

formance which are features of many practical striplines,
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Figure 1: Stripline with an air-gap of thickness 6.
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Figure 3: Normalized phase constant for proper and im-
proper modal solutions, and kT~O /ko versus air-
gap thickness, at 3 GIIz (h = w = 0.1 cm), for
the stripline of Fig. 1,

Figure 4: Normalized attenuation constant for the improper

modal solution versus air-gap thickness, at 3 GHz

(h= w = 0.1 cm), for the stripline of Fig. 1.
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Figure 5: The real part of the electric field distribution for

the proper solution (c$= 0.01 cm), in a rectangu-

lar window of 0.2 cm x 0.3 cm around the center

strip (w = 0.1 cm), for the geometry of Fig. 4.
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Figure 6: The real part of the electric field distribution

for the improper solution (6 = 0.01 cm), in a

rectangular window of O.2 cm x 0.3 cm around

the center strip (w = 0.1 cm), for the geometry

of Fig. 4.
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Figure 7: The imaginary part of the electric field distribu-

tion for the improper solution (8 = 0.01 cm], in

a rectangular window of 0.2 cm x 0.3 cm around

the center strip (W = 0.1 cm), for the geometry

of Fig. 4.
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